©2018 by Pegasus Neuroanalytics.


Selected publications related to our services


May 2016

Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.n.) route, showed that VEEV and WEEV enter the brain through olfactory sensory neurons (OSNs). In this study, we injected the mouse footpad with recombinant WEEV (McMillan) or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection and examined alphavirus entry in the CNS. Luciferase expression served as a marker of infection detected as bioluminescence (BLM) by in vivo and ex vivo imaging. BLM imaging detected WEEV and VEEV at 12 h postinoculation (hpi) at the injection site (footpad) and as early as 72 hpi in the brain. BLM from WEEV. McM-fLUC and VEEV.3908-fLUC injections was initially detected in the brain's circumventricular organs (CVOs). No BLM activity was detected in the olfactory neuroepithelium or OSNs. Mice were also injected in the footpad with WEEV. McM expressing DsRed (Discosoma sp.) and imaged by confocal fluorescence microscopy. DsRed imaging supported our BLM findings by detecting WEEV in the CVOs prior to spreading along the neuronal axis to other brain regions. Taken together, these findings support our hypothesis that peripherally injected alphaviruses enter the CNS by hematogenous seeding of the CVOs followed by centripetal spread along the neuronal axis.


June 2016

The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.